Abstract: Fraudulent behavior in drinking water consumption is a significant problem facing water supplying companies and agencies. This behavior results in a massive loss of income and forms the highest percentage of non-technical loss. Finding efficient measurements for detecting fraudulent activities has been an active research area in recent years. Intelligent data mining techniques can help water supplying companies to detect these fraudulent activities to reduce such losses. This research explores the use of two classification techniques (SVM and KNN) to detect suspicious fraud water customers. The main motivation of this research is to assist Yarmouk Water Company (YWC) in Irbid city of Jordan to overcome its profit loss. The SVM based approach uses customer load profile attributes to expose abnormal behavior that is known to be correlated with non-technical loss activities. The data has been collected from the historical data of the company billing system. The accuracy of the generated m

Call Now 9972364704 Download Abstract

Abstract: As a typical latent factor model, Matrix Factorization (MF) has demonstrated its great effectiveness in recommender systems. Users and items are represented in a shared low-dimensional space so that the user preference can be modeled by linearly combining the item factor vector V using the user-specific coefficients U. From a generative model perspective, U and V are drawn from two independent Gaussian distributions, which is not so faithful to the reality. Items are produced to maximally meet users’ requirements, which makes U and V strongly correlated. Meanwhile, the linear combination between U and V forces a bisection (one-to-one mapping), which thereby neglects the mutual correlation between the latent factors. In this paper, we address the upper drawbacks, and propose a new model, named Correlated Matrix Factorization (CMF). Technically, we apply Canonical Correlation Analysis (CCA) to map U and V into a new semantic space. Besides achieving the optimal fitting on the rating m

Call Now 9972364704 Download Abstract

Abstract: Due to the flexibility in modelling data heterogeneity, heterogeneous information network (HIN) has been adopted to characterize complex and heterogeneous auxiliary data in recommended systems, called HIN based recommendation. It is challenging to develop effective methods for HIN based recommendation in both extraction and exploitation of the information from HINs. Most of HIN based recommendation methods rely on path based similarity, which cannot fully mine latent structure features of users and items. In this paper, we propose a novel heterogeneous network embedding based approach for HIN based recommendation, called HERec. To embed HINs, we design a meta-path based random walk strategy to generate meaningful node sequences for network embedding. The learned node embeddings are first transformed by a set of fusion functions, and subsequently integrated into an extended matrix factorization (MF) model. The extended MF model together with fusion functions are jointly optimized for t

Call Now 9972364704 Download Abstract

Abstract: Nowadays, a big part of people rely on available content in social media in their decisions (e.g., reviews and feedback on a topic or product). The possibility that anybody can leave a review provides a golden opportunity for spammers to write spam reviews about products and services for different interests. Identifying these spammers and the spam content is a hot topic of research, and although a considerable number of studies have been done recently toward this end, but so far the methodologies put forth still barely detect spam reviews, and none of them show the importance of each extracted feature type. In this paper, we propose a novel framework, named NetSpam, which utilizes spam features for modeling review data sets as heterogeneous information networks to map spam detection procedure into a classification problem in such networks. Using the importance of spam features helps us to obtain better results in terms of different metrics experimented on realworld review data sets fro

Call Now 9972364704 Download Abstract