Block Chain Project List


Abstract: Biometric identification has become increasingly popular in recent years. With the development of cloud computing, database owners are motivated to outsource the large size of biometric data and identification tasks to the cloud to get rid of the expensive storage and computation costs, which however brings potential threats to users’ privacy. In this paper, we propose an efficient and privacy-preserving biometric identification outsourcing scheme. Specifically, the biometric data is encrypted and outsourced to the cloud server. To execute a biometric identification, the database owner encrypts the query data and submits it to the cloud. The cloud performs identification operations over the encrypted database and returns the result to the database owner. A thorough security analysis indicates the proposed scheme is secure even if attackers can forge identification requests and collude with the cloud. Compared with previous protocols, experimental results show the proposed scheme ach

Call Now 9972364704 Download Abstract

Abstract: E-VOTING IS AMONG the key public sectors that can be disrupted by blockchain technology.1 The idea in blockchain-enabled e-voting (BEV) is simple. To use a digital-currency analogy, BEV issues each voter a “wallet” containing a user credential. Each voter gets a single “coin” representing one opportunity to vote. Casting a vote transfers the voter’s coin to a candidate’s wallet. A voter can spend his or her coin only once. However, voters can change their vote before a preset deadline.

Call Now 9972364704 Download Abstract

Abstract: Searchable encryption facilitates cloud server to search over encrypted data without decrypting the data. Single keyword based searchable encryption enables a user to access only a subset of documents, which contains the keyword of the user’s interest. In this paper we present a single keyword based searchable encryption scheme for the applications where multiple data owners upload their data and multiple users access the data. We use attribute based encryption scheme that allows user to access the selective subset of data from cloud without revealing his/her access rights to the cloud server. The proposed scheme is proven adaptively secure against chosen-keyword attack in the random oracle model. We have implemented the scheme on Google cloud instance and the performance of the scheme found feasible in real-world applications.

Call Now 9972364704 Download Abstract

Abstract: Cloud computing has become increasingly popular among individuals and enterprises because of the benefits it provides by outsourcing their data to cloud servers. However, the security of the outsourced data has become a major concern. For privacy concerns, searchable encryption, which supports searching over encrypted data, has been proposed and developed rapidly in secure Boolean search and similarity search. However, different users may have different requirements on their queries, which mean different weighted searches. This problem can be solved perfectly in the plaintext domain, but hard to be addressed over encrypted data. In this study, the authors use locality-sensitive hashing (LSH) and searchable symmetric encryption (SSE) to deal with a privacy preserving weighted similarity search. In the authors’ scheme, data users can generate a search request and set the weight for each attribute according to their requirements. They treat the LSH values as keywords and mix them into t

Call Now 9972364704 Download Abstract

Abstract: In a block-chain IoT environment, when data or device authentication information is put on a block chain, personal information may be leaked through the proof-of-work process or address search. In this paper, we apply Zero- Knowledge proof to a smart meter system to prove that a prover without disclosing information such as public key, and we have studied how to enhance anonymity of block chain for privacy protection .

Call Now 9972364704 Download Abstract

Abstract: Blockchains, such as Bitcoin and Ethereum and their respective P2P networks have seen significant adoption in many sectors in the past few years. All these technologies that use the Blockchain pattern show that it is possible to rebuild any transactional system with better performance without relying on any trusted parties to manage transactions between peers. This insight has lead many companies to invest millions to understand the technology and to find a way to migrate from centralized to decentralized solutions.

Call Now 9972364704 Download Abstract

Abstract: Electronic Health Records (EHRs) are entirely controlled by hospitals instead of patients, which complicates seeking medical advices from different hospitals. Patients face a critical need to focus on the details of their own healthcare and restore management of their own medical data. The rapid development of blockchain technology promotes population healthcare, including medical records as well as patient-related data. This technology provides patients with comprehensive, immutable records and access to EHRs free from service providers and treatment websites. In this paper, to guarantee the validity of EHRs encapsulated in blockchain, we present an attribute-based signature scheme with multiple authorities, in which a patient endorses a message according to the attribute while disclosing no information other than the evidence that he has attested to it. Furthermore, there are multiple authorities without a trusted single or central one to generate and distribute public/private keys o

Call Now 9972364704 Download Abstract

Abstract: The cyber physical system (CPS) has gained considerable success in large-scale distributed integration environment. In such systems, the sensor devices collect data which would be disseminated via reliable manner to all interested co-operant entities from the physical world. However, highly unreliable environment of CPS, for example, a number of limitations of existing network middle wares, makes secure and reliable data distribution services a challenge issue. In this paper, we propose a new architecture called secure pub-sub (SPS) without middle ware, i.e., blockchain-based fair payment with reputation. In SPS, publishers publish a topic on the blockchain and subscribers specify an interest message by making a deposit to subscribing the topic. Then, if the interest message matches the topic, the publisher transmits the encrypted content of the topic to the blockchain such that the subscribers can decrypt the ciphertext to obtain the content, and mark the publisher as its reputation.

Call Now 9972364704 Download Abstract