Transformer less Inverter for Single-Phase Photovoltaic Systems


Abstract— When no transformer is used in a grid-connected photovoltaic (PV) system, a galvanic connection between the grid and the PV array exists. In these conditions, dangerous leakage currents (common-mode currents) can appear through the stray capacitance between the PV array and the ground. In order to avoid these leakage currents, different inverter topologies that generate no varying common-mode voltages, such as the half-bridge and the bipolar pulse width modulation (PWM) full-bridge topologies, have been proposed. The need of a high-input voltage represents an important drawback of the half-bridge. The bipolar PWM full bridge requires a lower input voltage but exhibits a low efficiency. This letter proposes a new high-efficiency topology that generates no varying common-mode voltage and requires the same low-input voltage as the bipolar PWM full bridge. The proposed topology has been verified in a 5-kW prototype with satisfactory results. Introduction/ literature survey Grid-Connected photovoltaic (PV) systems, particularly low-power single-phase systems (up to 5 kW), are becoming more important worldwide. They are usually private systems where the owner tries to get the maximum system profitability. Issues such as reliability, high efficiency, small size and weight, and low price are of great importance to the conversion stage of the PV system [1]–[3]. Quite often, these grid-connected PV systems include a line transformer in the power-conversion stage, which guarantees galvanic isolation between the grid and the PV system, thus providing personal protection. Furthermore, it strongly reduces the leakage currents between the PV system and the ground, ensures that no continuous current is injected into the grid, and can be used to increase the inverter output voltage level [1], [2], [4]. The line transformer makes possible the use of a full-bridge inverter with unipolar pulse width modulation (PWM). The inverter is simple. It requires only four insulated gate bipolar transistors (IGBTs) and has a good trade-off between efficiency, complexity and price [5]. Due to its low frequency, the line transformer is large, heavy and expensive. Technological evolution has made possible the implementation, within the inverters, of both ground-fault detection systems and solutions to avoid injecting dc current into the grid. diploma and engineering electronics project diploma electrical and electronics engineering projects electronics and communication engineering diploma projects diploma projects for electronics and communication engineering diploma electronics projects final year diploma final year projects for electronics and communication engineering diploma projects electronics communication